Master equation for a quantum particle in a gas.
نویسنده
چکیده
The equation for the quantum motion of a Brownian particle in a gaseous environment is derived by means of S-matrix theory. This quantum version of the linear Boltzmann equation accounts nonperturbatively for the quantum effects of the scattering dynamics and describes decoherence and dissipation in a unified framework. As a completely positive master equation it incorporates both the known equation for an infinitely massive Brownian particle and the classical linear Boltzmann equation as limiting cases.
منابع مشابه
Quantum stochastic equation for test particle interacting with dilute Bose gas
We use the stochastic limit to study long time quantum dynamics of a test particle interacting with a dilute Bose gas. The case of arbitrary form-factors and arbitrary, not necessarily equilibrium, gauge invariant quasi-free low density state of the Bose gas is considered. Starting from microscopic dynamics we derive in the low density limit, without using GNS representation, a quantum white no...
متن کاملRelaxation dynamics of a quantum Brownian particle in an ideal gas
We show how the quantum analog of the Fokker-Planck equation for describing Brownian motion can be obtained as the diffusive limit of the quantum linear Boltzmann equation. The latter describes the quantum dynamics of a tracer particle in a dilute, ideal gas by means of a translation-covariant master equation. We discuss the type of approximations required to obtain the generalized form of the ...
متن کاملTest particle in a quantum gas.
A master equation with a Lindblad structure is derived, which describes the interaction of a test particle with a macroscopic system and is expressed in terms of the operator valued dynamic structure factor of the system. In the case of a free Fermi or Bose gas the result is evaluated in the Brownian limit, thus obtaining a single generator master equation for the description of quantum Brownia...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملKinetic description of quantum Brownian motion
We stress the relevance of the two features of translational invariance and atomic nature of the gas in the quantum description of the motion of a massive test particle in a gas, corresponding to the original picture of Einstein used in the characterization of Brownian motion. The master equation describing the reduced dynamics of the test particle is of Lindblad form and complies with the requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2006